
  

  

Abstract— Snoring (SN) is an essential feature of sleep 
breathing disorders, such as obstructive sleep apnea (OSA). In 
this study, we evaluate epoch-based snoring detection methods 
using an unobtrusive eletromechanical film transducer (Emfit) 
mattress sensor using polysomnography recordings as 
reference. Two different approaches were studied: a support 
vector machine (SVM) classifier fed with a subset of spectral 
features and convolutional neural network (CNN) fed with 
spectrograms. Representative 10-min normal breathing (NB) 
and SN periods were selected for analysis in 33 subjects and 
divided in thirty-second epochs. In the evaluation, average 
results over 10 fold Monte Carlo cross validation with 80% 
training and 20% test split were reported. Highest performance 
was achieved using CNN, with 92% sensitivity, 96% specificity, 
94% accuracy, and 0.983 area under the receiver operating 
characteristics curve (AROC). Results showed a 6% average 
increase of performance of the CNN over SVM and greater 
robustness, and similar performance to ambient microphones. 

I. INTRODUCTION 

Snoring (SN) is a breathing sound usually defined as a 
noise produced during the breathing cycle [1] and an early 
sign of upper-airway dysfunction. Previous research has 
found that 10–60% of the population suffer from frequent 
snoring [2]-[4]. Its prevalence increases with age and it is 
more frequent in men than women [2], [4]. Snoring has been 
related to with sleepiness, poor work performance, traffic 
accidents, insomnia, and cardiovascular diseases [2], [5]-[8]. 
The scoring guidelines of the American Academy of Sleep 
Medicine (AASM) recommend three different methods for 
SN detection [9]: a piezoelectric sensor, microphones, and 
nasal pressure transducer. Different studies have proposed 
methods for the detection of snoring using these sensors. 
Detachment of the piezo-sensor, moisture on the nasal 
prongs, and the availability of different microphone set-ups 
are among their disadvantages. A recent study comparing 
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these methods, emphasized the need of a standardized 
method to measure snoring and audio measuring techniques 
were suggested as the best candidate [10]. 

The use of mattress sensors for the diagnosis of sleep-
disordered breathing (SDB) is increasing. The most 
commonly used mattress-like sensors are the Emfit and the 
polyvinylidene fluoride (PVDF). In Finland, the Emfit 
mattress is being used in the diagnosis of SDB: it has been 
found to reliably detect obstructive apneas and hypopneas as 
well as periods of prolonged partial obstruction [11], [12]. 
Snoring detection using a PVDF mattress sensor has recently 
been introduced by Hwang et al. They developed a method 
using two spectral features and a support vector machine 
(SVM) [13]. Our previous work using Emfit mattress, 
characterized the spectral differences between normal 
breathing (NB) and SN thirty-seconds epochs on three bands 
of interest: 6–16 Hz (BW1), 16-30 Hz (BW2), and 69–100 
Hz (BW3) [14]. 

In the last years, amid rapid hardware developments, 
deep neural networks (DNN) have gained popularity in the 
fields of image classification [15] and speech recognition 
[16]. Convolutional neural networks (CNN) is a type of 
DNN that performs feature extraction by means of 
convolving a collection of filters. The first modern CNN 
architectures appeared on the late 90's [17], [18]. Since its 
introduction, several new studies have applied different 
CNN architectures in other fields of study. 

The goal of this study is to compare the performance of 
SN detection methods using an Emfit mattress: (1) a SVM 
classifier fed with spectral features chosen by a feature 
selection step and (2) a CNN classifier fed with a time-
frequency representation of the Emfit signal. 

II.  SUBJECTS AND SIGNALS 

A. Subjects and Signals 
The study sample consisted of 33 patients, from which 

three patients were discarded from the study due to bad signal 
quality. A cohort of 24 male and 6 female were used in the 
analysis. Their age ranged 25–60 years and their body mass 
index (BMI) ranged 22.2–54 kgm-2. The polysomnographies 
(PSGs) were recorded in the sleep laboratory of Tampere 
University Hospital, Finland. Informed consents were 
obtained before recording and the study was approved by the 
ethical committee of the Pirkanmaa Hospital District. 

The PSGs were recorded and scored according to the 
AASM recommendations [9]. The recording comprised of 
the following signals: EEG (F3-A2, F4-A1, C3-A2, C4-A1, 
O1-A2, and O2-A1), ECG, two EOG channels, EMGs of the 
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submental and tibialis muscles, pulse oximetry (SpO2), and 
body position. Breathing airflow was obtained using a nasal 
pressure cannula and a thermistor. Respiratory movements 
were recorded using two inductive belts placed across the 
thorax and then abdomen. SN was measured with a ambient 
microphone fixed on the ceiling of the patient room. The 
Emfit mattress sensor with dimensions 32 cm × 62 cm × 0.4 
cm was placed underneath the mattress situated under the 
thorax. Sampling frequency of 2 Hz was used for SpO2, 10 
Hz for respiratory movements, 100 Hz for the piezo sensor, 
500 Hz for the ECG, and 200 Hz for the Emfit sensor and the 
remaining signals. 

A clinical neurophysiologist selected periods of SN and 
NB with a maximum length of 10 min for each subject. The 
selection of these periods was performed by the following 
protocol: initial periods of SN were selected based on high-
frequency components occurring from the nasal pressure 
transducer. At a second stage, the piezo-sensor placed on the 
neck was checked for the presence of the snoring signal using 
the envelope technique and a threshold of 10 µV. Finally, the 
resulting SN periods were validated audio signal from 
recorded video. A total number of 1007 epochs (median 34 
and inter-quartile range (IQR) 10) were selected: 463 NB 
epochs (median 17.5, IQR 8) and 544 SN epochs (median 20, 
IQR 4). Twelve epochs (10 NB, 2 SN) were discarded due to 
the presence of artifacts.  

The Emfit signal was filtered using a notch filter at 50 Hz 
to remove the power line interference. A 500th order finite 
impulse response filter (FIR) designed with a Hamming 
window and cut-off frequency of 6 Hz. The high order was 
used to achieve a short transition bandwidth. 

III. METHODS 
Two approaches for the SN epoch detection were compared: 
a SVM fed from a subset of spectral features and a CNN fed 
with thirty-second epochs spectrograms. A diagram of the 
procedure is illustrated in Fig. 1. 

A. Feature extraction and selection 
Based on previous work [14], the Emfit recording was 
parametrized using a set of spectral features on three spectral 
bands. These were derived from the normalized power 
spectral density (PSD) estimated using a nonparametric 
method known as the Welch method [19]. This is a suitable 
spectral estimation method for non-stationary signals 
reducing the variance of the power spectrum [20]. A window 
of 100 samples with 50% overlap along a 512-sample 
discrete Fourier transform (DFT) was employed. 
A collection of 35 features were extracted from each 
window in three bands: 6–16 Hz (BW1), 16-30 Hz (BW2), 
and 60–100 (BW3). In the following notation, we use 
subscripts 1–3 to represent BW1–3 bands. The absolute 

power (AP1–3), the peak amplitude (PA1–3), the relative 
power (RP1–3), the spectral entropy (SE1–3), four statistical 
moments (m1f1–3, m2f1–3, m3f1–3, and m4f1–3), and the form 
factor (F1–3). Additionally, power ratios between bands 
(PR1–5). To summarize the information from the epoch, the 
first three statistical moments of all features were estimated 
per epoch, resulting in 35×3 features. A p-dimensional 
feature vector (p=105) was constructed for each epoch. A 
feature selection algorithm known as max-relevance min-
redundancy (MRMR) was selected to reduce the 
dimensionality of the problem. MRMR selects features by 
reducing the maximal statistical dependency criterion using 
mutual information [21]. This method it was fast and yielded 
reasonable results in line with our previous study [14]. The 
joint mutual information and the conditional mutual 
information maximization criterion were also tested and 
discarded due to lower performance. 

B. Spectrogram estimation  
Each epoch of the Emfit signal was represented using a 
time-frequency representation called the spectrogram or 
short-time Fourier transform (STFT). A Hanning window of 
length 32 samples, 50% overlap, and a 512-sample DFT was 
used to estimate the spectrogram. The magnitude 
spectrogram was estimated as the absolute value of the 
STFT and normalized by the median energy in the 6–10 Hz 
spectral band. This normalization takes this band as the 
reference intensity. Finally, the normalized spectrogram was 
log-transformed. 

C. Classification 
1) SVM using selected features 
The subset of features were fed to the SVM classifier with a 
radial basis (RBF) kernel function and soft margin cost equal 
to one. The SVM classifier finds the optimal hyperplane 
between two classes by maximizing the distance to the 
nearest data points called support vectors. The SVM was 
chosen because it has been shown to perform reliably under 
different datasets [22]. 
2) CNN architecture 
The proposed CNN architecture (Fig. 2) contains three 
convolutional layers, each of which is followed by 
subsampling layers (or max-pooling). The feature 
parameters from the CNN are flattened before the final fully 
connected layer with one node. Thus, the architecture 
comprises of four learned layers: three 2D convolutional 
layer and one fully-connected layer with one output.  

The three 2D convolutional layers extract local shift-
invariant features. We used 32 filters with [3´3] kernel size 
were employed. To ensure the same input and output size, 
zero-padding was employed in the 2D convolution. Each 
convolutional layer was followed by max-pooling layers of 
size [6´5´5] in frequency and [5´5´5] in time dimension. 
Pooling in between convolutional layers allows more 
compact representations and increases robustness [23]. All 
three convolutional layers used batch normalization [24] and 
a rectified liner unit (ReLU) as an activation function [25], 
[26]. The use of the ReLU activation allows faster training 
times than the equivalent sigmoid activation functions [15]. 

 
Figure 1. Diagram of the assessment procedure. 
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The neural network was trained by backpropagation 
through time [27] using a first-order gradient based 
optimizer (Adam) [28] and the root mean-square error 
(RMSE) as the objective function. Additionally, due to the 
heterogeneous nature of our cohort, we used the dropout 
technique to reduce overfitting [29].  

To keep the matrices factorable during the max-pooling 
operations the thirty-seconds epoch spectrograms with 
dimensions [372´256] were trimmed. Thus, the input of the 
network were spectrograms of size [360´250] and one 
output representing the probability of SN. 

D. Training and testing of the classifiers 
We evaluated the results over 10-fold Monte Carlo cross 
validation (CV) with 80% training and 20% test split (10 
random 24 and 6 splits for training and testing, respectively) 
[30].  
In the feature-SVM scenario, the resulting features from the 
feature selection stage were z-scored. In the spectrogram-
CNN scenario we used a dropout of 0.50, a batch size of 8, 
and a maximum number of 300 iterations; our tests showed 
that beyond this this number of iterations the network 
stopped learning. 

E. Data and performance assessment 
MATLAB (R-2013b, The MathWorks, Inc., Natick, MA, 
USA) was used for signal processing, feature extraction 
feature selection, and the SVM classifier. The feature 
selection step was performed using FEAST ToolBox [31]. 
The CNN was implemented using the Keras framework [32] 
and Theano backend [33]. The diagnostic performance was 
assessed with the following performance indicators: 
sensitivity (percentage of SN epochs correctly identified), 
specificity (percentage of NB epochs correctly identified), 
precision (proportion of SN epochs that that are true 
positives), accuracy (proportion of SN and NB epochs 
correctly classified), the F-measure (the weighted harmonic 
mean between sensitivity and precision), and the area under 
the receiver operating characteristics curve (AROC).  

IV. RESULTS 
Results are displayed in Table I. Performance scores are 
given using their mean and standard deviation. Overall, both 
classifiers show high diagnostic performance reaching 
higher scores than 85% for sensitivity, specificity, and F-
measure. 
Highest diagnostic performance was achieved using CNN 
performing above 91% for the sensitivity, specificity and the 
F-measure; average AROC was 0.983 ± 0.002. In 
comparison with the feature-SVM architecture, the CNN 
performed an average of 5.6% better and 3.4% less 
variability between Monte Carlo simulations (these 
percentages were estimated as the mean of the differences of 
all performance indicators) 
The feature selection algorithm (MRMR) was tested on 5–20 
number of features. Best classification results were obtained 
with six features: the first statistical moment of the PR3, the 
second statistical moments of RP3 and m1f1, and finally the 
third statistical moments of AP3, SE3, and PR4. 

V. DISCUSSION AND CONCLUSIONS 
We have evaluated the suitability of modern DNNs over 

feature-based classification approaches on an Emfit mattress. 
For this purpose, a subset of spectral features was fed into 
SVM classifier. Its performance was compared with a DNN-
CNN which architecture was specifically designed for this 
problem. Results were evaluated using a 10-fold Monte 
Carlo CV with 80-20 splits. 

The CNN outperformed the SVM in all performance 
indicators with significantly less variability, suggesting 
greater robustness. However, the lack of time and non-linear 
features on the dataset might have improved slightly the 
SVM performance. Also, variability between runs was 
expected, specially due to the heterogeneous nature of the 
cohort. The CNN uses low-level features obtained from the 
spectrogram; when compared with known spectral features 
used by the SVM, it outperforms it with the added advantage 

TABLE I. DIAGNOSTIC ASSESMENT OF THE TWO CLASSFICIATION SCHEMAS BY MEANS OF 10-FOLD MONTE CARLO CV WITH 80-20 SPLIT (MEAN, SD) 
 Sensitivity Specificity Precision Accuracy F-measure AROC 

SVM 0.908 ± 0.033 0.854 ± 0.094 0.890 ± 0.063 0.885 ± 0.038 0.898 ± 0.038 0.935 ± 0.020 

CNN 0.916 ± 0.025 0.965 ± 0.016 0.962 ± 0.016 0.942 ± 0.006 0.938 ± 0.008 0.983 ± 0.002 

CV, cross-validation, SVM, Support Vector Machine; CNN, convolutional neural network; AROC, area under the receiving operating characteristics 
curve; SD, standard deviation. 

 
Figure 2. Architecture of the Convolutional Neural Network. The input is the spectrogram of a thirty-seconds Emfit signal. The output is the probability of 
snoring, P(SN). 
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of auto-generating most suitable low-level set of features. 

 Compared with previous pieces of research [13], our 
feature-SVM scenario reached slight worse results on 2.1% 
average, however, the CNN scenario improved available 
scores by 3.7%. Compared with tracheal and ambient 
microphones our method performs close to ambient 
microphones (sensitivity 93.1% and precision 95.9%), 
whereas with tracheal microphones (sensitivity 98.6%, 
precision 94.8) [34]. However, Emfit has the added benefit 
of being unobtrusive, it cannot be accidentally detached 
(unlike tracheal microphones), and produces less than 2% of 
data —requiring less computational and storing resources— 
in contrast to audio measuring techniques. 

Having tested both methods, we conclude that both yield 
good results with the CNN providing a significant boost of 
performance over the other. Additionally, it poses as a 
suitable candidate as a sensor to measure snoring. 
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